Global Warming, Imputed Prices, and Sustainable Development

Hirofumi Uzawa

Social Common Capital Research

Abstract

In this paper, we prove in terms of a simple dynamic model of global warming that sustainable time-paths of the atmospheric accumulations of carbon dioxide are obtained as the standard market equilibrium under the system of proportional carbon taxes, where the carbon taxes are levied at the rate that is proportional to the per capita national income of each country, with the discounted present value of the impact coefficient of global warming as the coefficient of proportion.

1. Introduction

Global warming involves international and intergenerational equity and justice. Although global warming is largely caused by the emission of carbon dioxide and other greenhouse gases associated with economic activities mostly in developed countries and by the disruption of forests – particularly tropical rain forests – again mostly resulting from the industrial activities of the developed countries, it is the people in developing countries who have to
bear the burden. While the current generation may enjoy the fruits of the economic activities
that cause global warming, it is the people in all future generations who will have to suffer
from a significant increase in atmospheric instability as a consequence.

The problems of global warming are genuinely dynamic. We inherit an excess
concentration of atmospheric carbon dioxide from past human activities and the choices we
make today concerning the use of fossil fuels and related activities significantly affect all
future generations through the phenomenon of global warming that is brought about by the
atmospheric accumulations of carbon dioxide due to the combustion of fossil fuels today.
Thus, we explicitly have to take into account the changes in the levels of welfare of all future
generations caused by the increases in the atmospheric accumulations of carbon dioxide. The
degree of uncertainty involved with these phenomena, however, is too great to be subject to
any objective analysis. We take instead a simplistic approach that all future paths are presumed
to be known for certain and derive a number of propositions concerning policy and institutional
arrangements to bring about the sustainable processes of economic development. The concept
of sustainability as introduced in this paper, however, is defined in such a manner that the
basic nature of policy choices and institutional arrangements to bring about the sustainable
economic development remains valid regardless of the specific pattern of future paths that is
presumed to be known for certain at the beginning of the analysis.

The dynamic analysis of global warming in this paper is developed primarily along
the lines suggested by a large number of contributions concerning the dynamic theory of
optimum capital accumulation and scientific analysis of global warming, as in detail referred
to in [14, 15]. We are particularly concerned with the processes of economic development
that result in the sustainable time-path of the atmospheric accumulations of carbon dioxide.
One of the main conclusions obtained in this paper is the proposition that sustainable processes
of the atmospheric accumulations of carbon dioxide are obtained as the standard market
equilibrium under the system of proportional carbon taxes, where the carbon taxes are levied
at the rate that is proportional to the per capita national income of each country, with the discounted present value of the impact coefficient of global warming as the coefficient of proportion.

Our analysis is focused upon the role of the imputed price of the atmospheric accumulations of carbon dioxide in the processes of sustainable economic development. The imputed price π^ν_t of the atmospheric accumulations of CO$_2$ for each country ν at a particular time t expresses the extent to which the marginal increase in the atmospheric accumulations of CO$_2$ at time t induces a marginal decrease in units of market prices in the welfare level of country ν, including those of all future generations. The imputed price π^ν_t is at the sustainable level at time t, if it remains stationary at time t; i.e.,

$$\dot{\pi}^\nu_t = 0 \text{ at time } t,$$

where $\dot{\pi}^\nu_t$ refers to the time derivative with respect to the time of the virtual capital market for the atmospheric accumulations of carbon dioxide at time t. A time-path of the atmospheric accumulations of CO$_2$ is defined sustainable for country ν, if the imputed price π^ν_t for country ν is at the sustainable level at all time t.

Because the sustainability of the imputed price is defined with respect to the fictitious time of the virtual capital market at time t, the sustainability of the imputed price does not necessarily imply the stationarity of the imputed price, as inadvertently stated in [14, 15]. All the policy and institutional conclusions obtained in [14, 15], however, remain valid with regard to the concept of the sustainability of time-paths of the atmospheric accumulations of carbon as introduced in this paper.
2. Accumulation of Carbon Dioxide in the Atmosphere – A Simple Dynamic Model

We denote by V_t the amount of CO$_2$ accumulated in the atmosphere at time t. The quantity V_t is measured in actual tons (in weights of carbon content) or in terms of the density of CO$_2$ in the atmosphere. We also adopt as the origin of the measurement the stable pre-Industrial Revolution level of 600 GtC (approximately corresponding to the density of 280 ppm). The current level of 760 GtC (380 ppm) is expressed as $V_t = 160$ GtC.

The premises of the dynamic model introduced in this paper are primarily based upon the scientific findings on global warming and related topics, as reported in [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], among others.

Changes of Carbon Dioxide Accumulations over Time

The atmospheric accumulations of CO$_2$ change over time due to natural and anthropogenic activities. Let us first consider changes in the atmospheric level of CO$_2$ due to natural activities.

A certain portion of atmospheric accumulations of CO$_2$ is absorbed by the oceans (roughly estimated at 50%) and by living land plants as well. In the simple dynamic model postulated in the present paper, the exchange of CO$_2$ between the atmosphere and the terrestrial bio-sphere is not taken into consideration. It is explicitly discussed in the more general model introduced in [14, 15].

Roughly 75-90 GtC of carbon are annually exchanged between the atmosphere and the surface oceans. The mechanisms by which atmospheric CO$_2$ is absorbed into the surface oceans are rather complicated. They depend partly upon the extent to which the surface waters of the oceans are saturated with CO$_2$, on the one hand, and partly upon the extent to which CO$_2$ is accumulated in the atmosphere in excess of the equilibrium level, on the other. The studies made by several meteorologists and oceanologists, in particular by [1, 7, 8, 9, 11]
suggest that the rate of ocean uptake is closely related to the atmospheric accumulations of CO$_2$ in excess of the stable, pre-Industrial Revolution level of 280 ppm.

As an approximation of the first order, we assume that the amount of atmospheric CO$_2$ annually absorbed by the oceans is given by μV_t, where V_t is the atmospheric accumulations of CO$_2$ measured in actual tons of CO$_2$, with the pre-Industrial Revolution level of 600 GtC as the origin of measurement, and the rate of absorption μ is a certain constant. The rate of absorption μ is rather difficult to estimate. The studies made by Takahashi and others referred to above suggest that the rate of absorption μ would have a magnitude of 2-4%. Indeed, according to the estimates made by [9], CO$_2$ remains airborne 7 to 17 years, and about a half is absorbed by the surface ocean, again resulting in the magnitude of $\mu = 2-4%$.

In the simple dynamic model introduced in this paper, the anthropogenic change in the atmospheric accumulations of CO$_2$ is exclusively due to the combustion of fossil fuels in connection with industrial, agricultural, and urban activities. We denote by a_t the annual rate of increase in the atmospheric level of CO$_2$ due to anthropogenic activities. The magnitude of a_t is currently estimated around 6 GtC per annum; that is, $a_t = 6$ GtC.

The dynamic equation for the atmospheric level of CO$_2$ is now formally written as

$$\dot{V}_t = a_t - \mu V_t, \quad (1)$$

where $\dot{V}_t = \frac{dV_t}{dt}$ denotes the rate of change in V_t over time.

The rate of anthropogenic change in the atmospheric accumulations of CO$_2$, a_t, is primarily determined by the combustion of fossil fuels, to be closely related to the levels of production and consumption activities conducted during the year observed.

There exist n countries in the world. Each country is generically denoted by ν ($\nu=1, \ldots, n$). We are concerned with the processes by which various relevant economic variables are determined at each time t. However, for the time being, all variables are denoted without explicit reference to time t.

5
Specifications for Utility Functions

We assume that the level of the utility u^v of each country v depends upon the atmospheric accumulations of CO$_2$ at time t, V. That is, the utility function for each country v is expressed in the following manner:

$$u^v = u^v(c^v, V),$$

where $c^v = (c^v_j)$ is the vector of goods consumed in country v on the per capita basis and V is the atmospheric accumulations of CO$_2$ measured in tones of CO$_2$ accumulated in the atmosphere, both at time t.

Remark: To simplify the exposition, our discussion will be carried out as if the size of population of each country v is one. However, when we discuss the policy and institutional implications, the standard case of numerous individuals in each country will be explicitly brought out.

For each country v, we assume that utility function $u^v(c^v, V)$ is strongly separable with respect to c^v and V in the sense originally introduced in [2]; that is,

$$u^v(c^v, V) = \varphi^v(V) u^v(c^v).$$

The function $\varphi^v(V)$ expresses the extent to which people in country v feel against the effect of global warming, which is referred to as the impact index of global warming for country v. We assume that the impact index function $\varphi^v(V)$ satisfies the following conditions:

$$\varphi^v(V) > 0, \quad \varphi^v(V) < 0, \quad \varphi^v''(V) < 0 \quad \text{for all } V.$$

The relative rate of the marginal change in the impact index $\varphi^v(V)$ due to the marginal increase in the atmospheric accumulation of CO$_2$ is given by

$$\tau^v(V) = -\frac{\varphi^v'(V)}{\varphi^v(V)},$$

which is referred to as the impact coefficient of global warming for country v. In what follows, we assume that the impact coefficient of global warming $\tau^v(V)$ is identical for all
countries. That is,
\[\tau^v(V) = \tau(V) \quad \text{for all } v. \]

The impact coefficient \(\tau(V) \) satisfies the following conditions:
\[\tau(V) > 0, \quad \tau'(V) - [\tau(V)]^2 > 0. \]

The impact index function \(\varphi(V) \) of the following form is often postulated:
\[\varphi(V) = (\hat{V} - V)^\beta, \quad 0 \leq V < \hat{V}, \quad (2) \]
where \(\hat{V} \) is the critical level of the atmospheric accumulation of CO\(_2\) and \(\beta \) is the sensitivity parameter, \(0 < \beta < 1 \). If the level of atmospheric accumulations of CO\(_2\) were higher than the critical level \(\hat{V} \), irrevocable damage would be inflicted on the global environment. In [12], where the concept of the impact coefficient of global warming is originally introduced, the critical level \(\hat{V} \) is assumed to be at 560 GtC.

For the impact index function \(\varphi(V) \) of the form (2), the impact coefficient \(\tau(V) \) is given by
\[\tau(V) = \frac{\beta}{\hat{V} - V}. \]

We assume that the neoclassical assumptions are satisfied for utility functions \(u^v(c^v) \):

(U1') \(u^v(c^v) \) is defined, positive, continuous, and continuously twice-differentiable for all \(c^v \geq 0 \).

(U2') Marginal utilities are positive for the consumption of goods \(c^v = (c_1^v) \):
\[u_{c_1^v}(c^v) > 0 \quad \text{for all } c^v \geq 0. \]

(U3') \(u^v(c^v) \) is strictly quasi-concave with respect to \(c^v \geq 0 \); that is, for any pair of vectors of consumption, \(c_0^v, c_1^v \), such that \(u^v(c_0^v) = u^v(c_1^v) \) and \(c_0^v \neq c_1^v \),
\[u^v((1-\lambda)c_0^v + \lambda c_1^v) < (1-\lambda)u^v(c_0^v) + \lambda u^v(c_1^v) \quad \text{for all } 0 < \lambda < 1. \]

(U4') \(u^v(c^v) \) is homogeneous of order one with respect to \(c^v \):
\[u^v(\lambda c^v) = \lambda u^v(c^v) \quad \text{for all } \lambda \geq 0, \ c^v \geq 0. \]

The Euler identity will play a crucial role in the following analysis.
\[u^v(c^v) = u^v_{c_1^v}(c^v)c_1^v \quad \text{for all } c^v \geq 0. \]
Specifications for Production Possibility Sets

The conditions concerning the production of goods in each country ν are specified by the production possibility set T^ν.

Those factors of production that are essentially needed in the production of goods are generically denoted by ℓ ($\ell = 1, \cdots, L$). The endowments of factors of production available in each country ν are expressed by a vector $K^\nu = (K^\nu_\ell)$.

In the dynamic situation, the endowments of factors of production available in each country ν at each time are endogenously determined in the sense that they are the outcomes of the choices made in the past by the members of the economy. In this paper, however, we assume that the endowments of factors of production are regarded as given, focusing our attention upon the atmospheric accumulations of CO$_2$ and their implications upon the natural and human environments.

The conditions concerning the production of goods in each country ν are specified by the production possibility set T^ν that summarizes the technological possibilities and organizational arrangements for country ν, with the quantities of factors of production available in country ν as given.

In country ν, the minimum quantities of factors of production that are needed to produce goods by the vector of production $x^\nu = (x^\nu_\ell)$ with the CO$_2$ emission at the level a^ν are specified by a vector-valued function $f^\nu(x^\nu, a^\nu) = (f^\nu_\ell(x^\nu, a^\nu))$. The production possibility set T^ν is then given by

$$T^\nu = \{(x^\nu, a^\nu): (x^\nu, a^\nu) \geq 0, \ f^\nu(x^\nu, a^\nu) \leq K^\nu\}.$$

We assume that marginal rates of substitution between the production of goods and the emission of CO$_2$ are smooth and diminishing, there always exist trade-offs between the production of goods and the emission of CO$_2$, and the conditions of constant returns to scale prevail. That is, we assume that
(T1) \(f^v(x^v, a^v) \) are defined, positive, continuous, and continuously twice-differentiable for all \((x^v, a^v) \geq 0\).

(T2) \(f^v_x(x^v, a^v) > 0, \ f^v_a(x^v, a^v) \leq 0 \) for all \((x^v, a^v) \geq 0\).

(T3) \(f^v(x^v, a^v) \) are strictly quasi-convex with respect to \((x^v, a^v)\) for all \((x^v, a^v) \geq 0\).

(T4) \(f^v(x^v, a^v) \) are homogeneous of order one with respect to \((x^v, a^v)\); that is,

\[
f^v(\lambda x^v, \lambda a^v) = \lambda f^v(x^v, a^v) \quad \text{for all } \lambda \geq 0, \ (x^v, a^v) \geq 0.
\]

Postulates (T1-3), as specified above, imply that the production possibility set \(T^v\) is a closed, convex set of vectors \((x^v, a^v)\).

Market Equilibrium and Global Warming

We consider the situation where carbon taxes at the rate of \(\theta^v\) are levied upon the emission of \(\text{CO}_2\) in each country \(v\).

Market equilibrium for the world economy is obtained if we find the prices of goods \(p\) at which total demand is equal to total supply:

\[
\sum_v c^v = \sum_v x^v.
\]

Total \(\text{CO}_2\) emissions, \(a\), are given by

\[
a = \sum_v a^v.
\]

Supply and demand conditions are specified in the following manner.

(i) Supply conditions in each country \(v\) are obtained by maximizing net profits

\[
px^v - \theta^v a^v
\]

over \((x^v, a^v) \in T^v\); that is, subject to the constraints that

\[
f^v(x^v, a^v) \leq K^v.
\]

(ii) Demand conditions in each country \(v\) are obtained by maximizing utility function

\[
u^v(c^v, V) = \varphi(V) u^v(c^v)
\]

subject to budget constraints:

\[
pe^v = y^v, \ c^v \geq 0,
\]
where \(y^\nu \) is per capita national income of country \(\nu \):

The optimum levels of production and \(CO_2 \) emissions in country \(\nu \) are determined by the following marginality conditions:

\[
p = r^\nu f^\nu(x^\nu, a^\nu),
\]

\[
\theta^\nu = r^\nu [-f^\nu_a(x^\nu, a^\nu)],
\]

where \(r^\nu \) is the vector of rentals prices of factors of production in country \(\nu \).

Because the technologies are assumed to be subject to constant returns to scale, (T4), we have that

\[
p x^\nu - \theta^\nu a^\nu = r^\nu [f^\nu_s(x^\nu, a^\nu)x^\nu + f^\nu_a(x^\nu, a^\nu)a^\nu] = r^\nu f^\nu(x^\nu, a^\nu) = r^\nu K^\nu.
\]

That is, the net evaluation of output is equal to the sum of the rentals payments to all factors of production.

When all factors of production are owned by the individual members of the country \(\nu \), then national income \(y^\nu \) of country \(\nu \) is equal to the sum of the rentals payments \(r^\nu K^\nu \) and the tax payments \(\theta^\nu a^\nu \) made by the producers for the emission of \(CO_2 \) in country \(\nu \); that is,

\[
y^\nu = r^\nu K^\nu + \theta^\nu a^\nu = (p x^\nu - \theta^\nu a^\nu) + \theta^\nu a^\nu = p x^\nu.
\]

That is, national income \(y^\nu \) of country \(\nu \) is equal to the value of outputs in units of market prices, \(p x^\nu \).

The optimum vector of consumption \(c^\nu \) is obtained by solving the following marginality conditions:

\[
\varphi(V) u^\nu_{c^\nu}(c^\nu) = \lambda^\nu p,
\]

where \(\lambda^\nu \) is the Lagrange unknown associated with the budgetary constraints.
3. Deferential Equilibrium

One of the basic problems we face in the dynamic analysis of global warming is to see how the carbon tax rate θ^ν in each country ν is determined. Our analysis will be carried out in terms of the concept of deferential equilibrium, originally introduced in [14].

Deferential equilibrium is obtained if, when each country chooses the levels of economic activities today, it takes into account the negative impact upon the future levels of its own utilities brought about by the CO$_2$ emissions of that country today.

Consider the situation in which a combination (x^ν, a^ν) of production vector x^ν and CO$_2$ emissions a^ν is chosen in country ν. Suppose CO$_2$ emissions a^ν in country ν are increased by a marginal amount. This would induce a marginal increase in the aggregate amount of CO$_2$ emissions in the world, effecting a marginal increase in the atmospheric level of CO$_2$. The resulting marginal increase in the degree of global warming would induce a marginal decrease in country ν's utility. Deferential equilibrium is obtained if this marginal decrease in country ν's utility due to the marginal increase in CO$_2$ emissions in country ν today is taken into consideration in determining the levels of consumption, production, and CO$_2$ emissions today.

The marginal decrease in country ν's utility due to the marginal increase in CO$_2$ emissions in country ν is given by the partial derivative, with minus sign, of utility function $u^\nu(c^\nu, V)$ of country ν with respect to atmospheric accumulations of CO$_2$, V; that is,

$$-\frac{\partial u^\nu}{\partial V} = -\phi'(V)u^\nu(c^\nu) = \tau(V)\phi(V)u^\nu(c^\nu),$$

where $\tau(V)$ is the impact coefficient of global warming.

We assume that future utilities of country ν are discounted at the social rate of discount δ that is exogenously given. We also assume that the rate of discount δ is a positive constant and is identical for all countries in the world. As atmospheric carbon dioxide is annually absorbed at the rate μ, the imputed price ψ^ν of the atmospheric
accumulations of CO₂ of each country ν is given by the discounted present value of the marginal decrease in country ν's utility due to the marginal increase in CO₂ emissions in country ν; that is,

\[\psi^\nu = \frac{1}{\delta + \mu} \left[-\frac{\partial u^\nu}{\partial V} \right] = \frac{1}{\delta + \mu} \tau(V)\phi(V)u^\nu(c^\nu). \] (5)

Deferential equilibrium is obtained if this marginal decrease in country ν's future utility due to the marginal increase in CO₂ emissions today in country ν is balanced with the marginal increase in country ν's utility due to the resulting marginal increase in the level of production.

If the level of CO₂ emissions in country ν is \(a^\nu \), then the net level of country ν's utility is given by

\[\phi(V)u^\nu(c^\nu) - \psi^\nu a^\nu. \]

The choice of the levels of consumption, production, and CO₂ emissions for each country ν under the deferential behavioristic postulates then may be viewed as the optimum solution to the following maximum problem:

Find the combination \((c^\nu, x^\nu, a^\nu) \) of consumption vector \(c^\nu \), production vector \(x^\nu \), and CO₂ emissions \(a^\nu \) that maximizes the net level of country ν's utility

\[\phi^\nu(V)u^\nu(c^\nu) - \psi^\nu a^\nu \]

subject to the constraints that

\[pc^\nu = px^\nu, \ c^\nu \geq 0 \] (6)

\[f^\nu(x^\nu, a^\nu) \equiv K^\nu. \] (7)

The maximum problem is solved in terms of the Lagrangian form:

\[L^\nu(c^\nu, x^\nu, a^\nu; \lambda^\nu, \lambda^\nu r^\nu) \]

\[= \phi^\nu(V)u^\nu(c^\nu) - \psi^\nu a^\nu + \lambda^\nu (px^\nu - pc^\nu) + \lambda^\nu r^\nu[K^\nu - f^\nu(x^\nu, a^\nu)], \]

where \(V \) and \(\psi^\nu \) are given. The variables \(\lambda^\nu, \lambda^\nu r^\nu \) are the Lagrangian unknowns associated with constraints (6) and (7), respectively.

The optimum conditions are:
When expressed in units of market prices, the optimum conditions are

\[\alpha \varphi(V) u'_v(c^v) = p \quad (8) \]
\[p = r^v f^v(x^v, a^v) \quad (9) \]
\[\theta^v = r^v [-f^v_a(x^v, a^v)] \quad (10) \]

where \(\alpha^v \) is the coefficient to convert values in units of welfare to those in units of market prices

\[\alpha^v = \frac{1}{\lambda^v} > 0, \]

and \(\theta^v \) is the imputed price of atmospheric accumulations of CO\(_2\) in units of market prices

\[\theta^v = \alpha^v \psi^v, \]

which, by substitution into (5), implies

\[\theta^v = \frac{1}{\delta + \mu} \tau(V) \alpha^v \varphi(V) u'(c^v). \quad (11) \]

By multiplying both sides of relations (8) by \(c^v \),

\[\alpha^v \varphi(V) u'_v(c^v) c^v = pc^v. \]

By making use of the Euler identity and noting the budget constraints (6), we obtain

\[\alpha^v \varphi(V) u'_v(c^v) = y^v, \quad (12) \]

where \(y^v \) is per capita national income of country \(v \) :

\[y^v = px^v. \]

In view of (11) and (12), we obtain

\[\theta^v = \frac{\tau(V)}{\delta + \mu} y^v. \quad (13) \]

Marginality conditions (9) and (10) imply that net profits

\[px^v - \theta^v a^v \]

are maximized over the technological possibility set \((x^v, a^v) \in T^v \), where carbon tax rate \(\theta^v \) is given by (13).
Hence, the conditions for deferential equilibrium of global warming are identical with those for a standard market equilibrium when carbon taxes with rate θ^v given by (13) are levied; that is,

(i) For each country v, the consumption vector c^v maximizes country v's utility function

$$u^v(c^v, V) = \varphi^v(V)u^v(c^v)$$

subject to the budgetary constraints

$$pc^v = y^v, \quad c^v \geq 0,$$

where y^v is per capita national income of country v, and the level of atmospheric accumulations of CO$_2$, V, is assumed to be given.

(ii) For each country v, the combination (x^v, a^v) of production vector x^v and CO$_2$ emissions a^v maximizes net profits

$$px^v - \theta^v a^v$$

over the technological possibility set $(x^v, a^v) \in T^v$.

Differential equilibrium for the world economy then is obtained if we find the prices of goods p at which total demand is equal to total supply:

$$\sum_v c^v = \sum_v x^v$$

and total CO$_2$ emissions a are given by

$$a = \sum_v a^v.$$

The preceding discussion may be summarized by the following proposition.

Proposition 1. Deferential equilibrium corresponds precisely to the standard market equilibrium under the system of proportional carbon taxes, where, in each country v, the carbon taxes are levied at the rate θ^v that is proportional to the per capita national income y^v of each country v, with the discounted present value $\frac{\tau(V)}{\delta + \mu}$ of the impact coefficient of global warming $\tau(V)$ as the coefficient of proportion; that is,

$$\theta^v = \frac{\tau(V)}{\delta + \mu} y^v,$$
where \(\tau(V) \) is the impact coefficient of global warming, \(\delta \) is the social rate of discount, and \(\mu \) is the rate at which atmospheric \(\text{CO}_2 \) is annually absorbed by the oceans.
4. Imputed Price and Sustainable Development

In the dynamic analysis of global warming, a crucial role is played by the concept of the imputed price of the atmospheric accumulations of CO$_2$. The imputed price ψ_{ν}^t of the atmospheric accumulations of CO$_2$ in units of utility for country ν at time t expresses the extent to which the marginal increase in the atmospheric accumulations of CO$_2$ at time t induces the marginal decrease in the welfare level of country ν, including those of all future generations. The calculation of the magnitude of the welfare gains may be made along the lines similar to those discussed in the previous sections.

Suppose ψ_{ν}^t is the price in units of utility charged to the emission of CO$_2$ in country ν at time t. The resulting pattern of consumption, production, and the level of CO$_2$ emissions in country ν are obtained as the optimum solution for the following maximum problem:

Find the combination $(c_{\nu}^t, x_{\nu}^t, a_{\nu}^t)$ of consumption vector c_{ν}^t, production vector x_{ν}^t, and CO$_2$ emissions a_{ν}^t that maximizes the net level of country ν’s utility

$$\varphi_{\nu}(V_{\nu}^t)u_{\nu}^t(c_{\nu}^t) - \psi_{\nu}^t a_{\nu}^t$$

subject to the constraints that

$$pc_{\nu}^t = px_{\nu}^t, \ c_{\nu}^t \geq 0$$

$$f_{\nu}(x_{\nu}^t, a_{\nu}^t) \leq K_{\nu}.$$

The maximum problem is solved exactly in the same manner as for the case of deferential equilibrium. The marginal decrease m_{ν}^t in the welfare level of country ν at time t induced by the marginal increase in the atmospheric accumulations V_{ν}^t of CO$_2$ at time t is given by

$$m_{\nu}^t = -\frac{\partial}{\partial V_{\nu}}[\varphi_{\nu}(V_{\nu}^t)u_{\nu}^t(c_{\nu}^t)] = \tau(V_{\nu}^t)\varphi_{\nu}(V_{\nu}^t)u_{\nu}^t(c_{\nu}^t),$$

which, in units of market prices, may be expressed as

$$\alpha_{\nu}^t m_{\nu}^t = \tau(V_{\nu}^t)\alpha_{\nu}^t \varphi_{\nu}(V_{\nu}^t)u_{\nu}^t(c_{\nu}^t) = \tau(V_{\nu}^t)y_{\nu}^t,$$

where y_{ν}^t is per capita national income of country ν at time t.

16
Let us denote by \(\pi^\nu_t \) the imputed price of the atmospheric accumulations of CO\(_2\) in units of market prices for country \(\nu \) at time \(t \); that is, \(\pi^\nu_t = \alpha^\nu_t \psi^\nu_t \). Then, by noting (15), we have from the definition of the imputed price that

\[
\pi^\nu_t = \int_0^t \alpha^\nu_t m^\nu_t e^{-(\delta + \mu)(t-\tau)} d\tau = \int_0^t \tau(V_\nu) y^\nu_t e^{-(\delta + \mu)(t-\tau)} d\tau.
\]

(16)

By differentiating both sides of (16) with respect to time \(t \), we obtain the following differential equation:

\[
\dot{\pi}^\nu_t = (\delta + \mu)\pi^\nu_t - \tau(V_\nu)y^\nu_t.
\]

(17)

Differential equation (17) is nothing but the Euler-Lagrange differential equation in the calculus of variations or the Ramsey-Keynes equation in the theory of optimum economic growth.

To clarify the intrinsic meaning of the imputed price of the atmospheric accumulations of CO\(_2\), we introduce a virtual capital market at time \(t \) that is perfectly competitive and the atmospheric accumulations of CO\(_2\) are transacted as an asset. The imputed price \(\pi^\nu_t \) at time \(t \) is identified with the market price. Consider the situation in which the unit of such an asset is held for a short time period \([t, t + \Delta t]\), \((\Delta t > 0) \). The gains obtained by holding such an “asset” are composed of “capital gains” \(\Delta\pi^\nu_t = \pi^\nu_{t+\Delta t} - \pi^\nu_t \) and “earnings” \(\tau(V_\nu)y^\nu_t \Delta t \), minus “depreciation charges” \(\mu \pi^\nu_t \Delta t \); that is,

\[
\Delta\pi^\nu_t + \tau(V_\nu)y^\nu_t \Delta t - \mu \pi^\nu_t \Delta t.
\]

On the other hand, the cost of holding such an “asset” for the time period \([t, t + \Delta t]\) is “interest” payment \(\delta \pi^\nu_t \Delta t \), where the social rate of discount is identified with the “market rate of interest”. Hence, on a virtual capital market, these two amounts become equal; that is,

\[
\Delta\pi^\nu_t + \tau(V_\nu)y^\nu_t \Delta t - \mu \pi^\nu_t \Delta t = \delta \pi^\nu_t \Delta t,
\]

which, by dividing both sides by \(\Delta t \) and taking the limit as \(\Delta t \to 0 \), yields differential equation (17).

It may be noted that the time derivative in the differential equation (17) refers to the fictitious time of the virtual capital market at time \(t \) and remains valid only at time \(t \). For any
future time τ ($\tau > t$), equation (17) has to be modified by taking into account the changing circumstances that are relevant in the determination of market equilibrium.

We define that the imputed price π^ν_t of the atmospheric accumulations of CO$_2$ for country ν is at the sustainable level at time t, if $\dot{\pi}^\nu_t = 0$ at time t. That is,

$$\pi^\nu_t = \theta^\nu_t, \quad \theta^\nu_t = \frac{\tau(V)}{\delta + \mu} y^\nu_t$$

at time t.

A time-path (V_t) of the atmospheric accumulations of CO$_2$ is defined sustainable for country ν, if the imputed price π^ν_t for country ν is at the sustainable level at all time t. It is defined sustainable, if it is sustainable for all countries in the world.

The discussion above may be summarized as the following proposition:

Proposition 2. Sustainable time-paths (V_t) of the atmospheric accumulations of CO$_2$ are obtained as the standard market equilibrium under the system of proportional carbon taxes, where, in each country ν, the carbon taxes are levied at the rate θ^ν_t that is proportional to the per capita national income y^ν of each country ν, with the discounted present value

$$\frac{\tau(V)}{\delta + \mu}$$

of the impact coefficient of global warming $\tau(V)$ as the coefficient of proportion; that is,

$$\theta^\nu_t = \frac{\tau(V)}{\delta + \mu} y^\nu,$$

where $\tau(V)$ is the impact coefficient of global warming, δ is the social rate of discount, and μ is the rate at which atmospheric CO$_2$ is annually absorbed by the oceans.
A hypothetical case of the incidences of the proportional carbon taxes with the coefficient of proportion 0.01 is presented in terms of the statistical data of 2005 (in US$). The data include all radiative forcing agents (RFA).

<table>
<thead>
<tr>
<th>Countries</th>
<th>National Income per capita</th>
<th>RFA Increase per Capita (Ct)</th>
<th>Imputed Price per Ct</th>
<th>Carbon Taxes per capita</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>42,000</td>
<td>5.90</td>
<td>420</td>
<td>2,500</td>
</tr>
<tr>
<td>Canada</td>
<td>34,000</td>
<td>6.20</td>
<td>340</td>
<td>2,100</td>
</tr>
<tr>
<td>UK</td>
<td>32,000</td>
<td>3.00</td>
<td>320</td>
<td>960</td>
</tr>
<tr>
<td>France</td>
<td>31,000</td>
<td>2.20</td>
<td>310</td>
<td>680</td>
</tr>
<tr>
<td>Germany</td>
<td>31,000</td>
<td>3.20</td>
<td>310</td>
<td>980</td>
</tr>
<tr>
<td>Italy</td>
<td>28,000</td>
<td>2.20</td>
<td>280</td>
<td>600</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>35,000</td>
<td>3.60</td>
<td>350</td>
<td>1,200</td>
</tr>
<tr>
<td>Sweden</td>
<td>32,000</td>
<td>1.90</td>
<td>320</td>
<td>600</td>
</tr>
<tr>
<td>Denmark</td>
<td>34,000</td>
<td>3.20</td>
<td>340</td>
<td>1,100</td>
</tr>
<tr>
<td>Indonesia</td>
<td>3,100</td>
<td>1.70</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Japan</td>
<td>31,000</td>
<td>2.70</td>
<td>310</td>
<td>840</td>
</tr>
<tr>
<td>Korea</td>
<td>21,000</td>
<td>2.60</td>
<td>210</td>
<td>560</td>
</tr>
<tr>
<td>Malaysia</td>
<td>11,000</td>
<td>1.90</td>
<td>110</td>
<td>210</td>
</tr>
<tr>
<td>The Philippines</td>
<td>3,200</td>
<td>0.30</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>Singapore</td>
<td>40,000</td>
<td>3.20</td>
<td>400</td>
<td>1,300</td>
</tr>
<tr>
<td>Thailand</td>
<td>6,900</td>
<td>1.20</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>India</td>
<td>2,200</td>
<td>0.30</td>
<td>30</td>
<td>7</td>
</tr>
<tr>
<td>China</td>
<td>4,100</td>
<td>1.10</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Australia</td>
<td>33,000</td>
<td>7.10</td>
<td>330</td>
<td>2,300</td>
</tr>
<tr>
<td>New Zealand</td>
<td>23,000</td>
<td>3.50</td>
<td>230</td>
<td>790</td>
</tr>
</tbody>
</table>

Sources: UNFCCC, World Development Indicators
References

